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Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference

C. I. Barbosa and H. L. Harney
Max-Planck-Institut fu¨r Kernphysik, D-69029 Heidelberg, Germany

~Received 13 November 1998; revised manuscript received 25 October 1999!

Bayesian inference is applied to the level fluctuations of two coupled microwave billiards in order to extract
the coupling strength. The coupled resonators provide a model of a chaotic quantum system containing two
coupled symmetry classes of levels. The number variance is used to quantify the level fluctuations as a function
of the coupling and to construct the conditional probability distribution of the data. The prior distribution of the
coupling parameter is obtained from an invariance argument on the entropy of the posterior distribution.

PACS number~s!: 05.45.2a, 02.50.Wp, 11.30.Er
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I. INTRODUCTION

The subject of the present paper is Bayesian inferenc
applied to the experiment of Ref.@1# in order to extract the
mean square matrix element coupling two chaotic classe
quantum states. The Bayesian procedure described b
does not contain any arbitrary element: The pr
distribution—sometimes left to the educated guess of
analyst@2#—is determined by an invariance argument on
entropy of the posterior distribution.

The present paper is organized as follows. In Sec. II,
briefly describe the experiment with superconducting mic
wave resonators that has provided the data for the pre
analysis. The random matrix model for the coupling of tw
symmetry classes of chaotic states is defined in Sec. II
yields, in analytic form, the dependence of the observable
the coupling strength which is to be determined. Bayes
inference, especially the definition of the prior distribution,
discussed in Sec. IV. The conditional probability distributi
of the data is defined in Sec. V. The results are given in S
VI. A discussion in Sec. VII concludes the paper.

II. EXPERIMENT WITH COUPLED MICROWAVE
RESONATORS

Billiards provide models of classical and quantum m
chanical chaos. They have been studied extensively, se
review article @3#. Quantum mechanical billiards can b
simulated by flat microwave resonators@4–7#. One class of
these ‘‘quantum’’ billiards are the Bunimovich stadium b
liards @8# experimentally investigated in Refs.@1,7,9–12#.

These investigations show that the fluctuation proper
of the quantum chaotic systems with well defined symm
tries are described by Dyson’s matrix ensembles@3#. In the
case of the stadium billiards, the correct description is p
vided by the Gaussian orthogonal ensemble~GOE!. This
means, e.g., that the fluctuations of the positions of
eigenmodes—shortly the level fluctuations—are the sam
the fluctuations of the eigenvalues of random matrices dra
from the GOE. In order to assess these fluctuations, var
statistics have been defined, such as the distance of ne
boring levels or the variance of the number of levels in
given interval. The expectation values of these statistics h
been worked out@13,14# for comparison with data such a
the present ones.
PRE 621063-651X/2000/62~2!/1897~8!/$15.00
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In the previous work@1#, the level positions of a system
have been measured that consisted of two~quarters of! sta-
dium billiards coupled electromagnetically. See Fig. 1. T
technical realization of the coupling has been described
Ref. @1#. In the frequency range of 0 to 16 GHz, the comple
spectra of the two stadia displayed 608 and 883 resona
in the (g51) stadium and the (g51.8) stadium, respec
tively. The mean level spacing isD510.7 MHz.

In Fig. 2, small pieces of spectra are shown for thr
different couplings. The arrows shall help to recognize t
due to the coupling the resonances are shifted by statistic
varying amounts.

This system simulates two symmetry classes of lev
coupled by a symmetry breaking interaction. Each class
levels, represented by each of the uncoupled stadia, ca
identified with a chaotic system of well defined symme
having the properties of the GOE. The entire system of
coupled stadia no longer has the universal properties of
GOE. Its properties are a function of a suitably defined c
pling parameterL.

The investigation of symmetry breaking in chaotic qua
tum systems is not a recent challenge to physicists@15#.
Good examples of the experimental and theoretical effo
already invested into this problem are the cases of isos
mixing @16–18#, parity violation in heavy nuclei@19#, and
the breaking of certain atomic and molecular symmetr
@15,20#. The experiment performed in Ref.@1# provides a
general model for these case studies.

In the present paper, we do not describe any one of
specific case studies; we shall not even describe in m

FIG. 1. Shapes of the two coupled stadium billiards. The circ
inside the squares indicate the positions of the antennas use
scatter microwave power through the system in order to find
eigenfrequencies of the entire system. The parameterg is the ratio
between the length of the rectangular part and the radius of
circular part of the resonator. The vertical heights of the stadia
given in Sec. VI.
1897 ©2000 The American Physical Society
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1898 PRE 62C. I. BARBOSA AND H. L. HARNEY
detail the model experiment of Ref.@1#. We rather describe
in the next section the model experiment@1# in an abstract
mathematical form and then turn to its analysis in Secs. I
VII.

III. MATHEMATICAL MODEL
OF SYMMETRY BREAKING

IN A CHAOTIC QUANTUM SYSTEM

In the absence of coupling each eigenstate of the sys
of Fig. 1 can be characterized as belonging to either reso
tor 1 or resonator 2. This is equivalent to the assignment
quantum numberg. The spectrum of states of eachg has the
statistical properties of the eigenvalues of matrices dra
from the GOE. The superposition of the two spectra displ
what we shall call 2 GOE behavior. It can be described b
block-diagonal Hamilton operator where each block is
element of the GOE, hence, by the first term of the Ham
tonian

~1!

For aÞ0, the off-diagonal matrixV in the second term on
the right-hand side~rhs! provides the coupling between bo
symmetry classes. It has Gaussian random elements, a
GOE blocks. If the two GOE blocks have the same dim
sion then their elements as well as the elements ofV shall all
have the same rms value. Thena51 turnsH as a whole into
a GOE matrix@21#. The resulting spectrum displays what w
call 1 GOE behavior. If the two GOE blocks have differe
dimensions, then the rms values must be chosen such

FIG. 2. Three spectra, within a small range of frequencies, ta
at different couplings between the two resonators. The coup
increases from top to bottom. Its notation (x,y) is explained in Sec.
VI. The arrows shall help to recognize the shifts of a few re
nances.
–
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their spectra have the same length. The details are give
Ref. @14#. This model is a special case of the model
Rosenzweig and Porter@15#.

The parameter that governs the level statistics isav/D
rather thana. Here,D is the mean level distance ofH. See
Refs.@14,18#. In the sequel, the coupling parameter

L5S av
D D 2

~2!

will be used. Often the coupling strength is also parametri
in terms of the spreading width

G↓52p
~av !2

D
52pLD. ~3!

The statistic used in the present paper in order to cha
terize the behavior of the data, is the so-calledS2 statistic or
number variance. It is the variancez(L) of the numbern(L)
of levels found in an interval of lengthLD, i.e.,

z~L !5^~n~L !2L !2&. ~4!

Here, the angular bracketŝ& denote the average over a
pieces of spectra of lengthL that have been cut out of th
entire experimental spectrum. The procedure is describe
Sec. V.

The expectation valuez(L) with respect to the statistica
ensemble defined by Eq.~1! is calledS2(L,L). This func-
tion has been calculated by Frenchet al. @13# and by Leitner
and co-workers@14#. According to Ref.@14#, it is

S2~L,L!5z~L !5S2~L,`!1
1

p2
lnS 11

p2L2

4~t1p2L!2D .

~5!

Here,S2(L,`) is the expression

S2~L,`!5
2

p2 H ln~2pL !1gE111
1

2
@Si~pL !#2

2
p

2
Si~pL !2cos~2pL !2Ci~2pL !

1p2LF12
2

p
Si~2pL !G J . ~6!

It describes the 1 GOE behavior. The second term on
right-hand side of Eq.~5! obviously vanishes forL→`.

In Eq. ~6!, gE is Euler’s constant and Si, Ci are the sin
and cosine integrals defined, e.g., in paragraph 8.23 of
@22#. The parametert is a function of the ratio between th
dimensions of the two GOE blocks in the first term of E
~1!. In the present situation, it is equal to 0.74.

The functionS2 depends on the coupling parameterL as
is illustrated by Fig. 3. ThereforeL can be inferred from the
experimental number variancez(L). The principle of this
inference is described in the next section.

n
g

-



er

-

.

il-
s

t.

ri-

f

a

-
ct

he

res-

d

fs.
up
a-

fi-

w
ce
-

ure

d

PRE 62 1899ANALYZING SYMMETRY BREAKING WITHIN A . . .
IV. BAYESIAN INFERENCE

Suppose that a set of experimental datazk , k
51, . . . ,M , is given which depends on a parameterL in the
sense that the probability distributionwk of the eventzk is
conditioned by the hypothesisL,

wk5wk~zkuL!. ~7!

The eventszk shall be statistically independent of each oth
The joint distributionW of the zk , k51, . . . ,M , is then

W~zuL!5)
k51

M

wk~zkuL!. ~8!

Bayes’ theorem follows the distributionP(Luz) of L under
the condition that the dataz are given via

P~Luz!5
W~zuL!m~L!

m~z!
. ~9!

Here,m(L) is the so-called prior distribution. It is the mea
sure of integration in the space ofL. One must define it such
that it represents ignorance onL, in a sense described below
The functionm(z) is the prior distribution ofz. It is not
independent ofm; it is given by the normalizing integral

m~z!5E dLW~zuL!m~L!. ~10!

In the framework of the logic underlying Eq.~9!, a probabil-
ity distribution of, say,L is considered to represent the ava
able knowledge onL and the prior distribution correspond
to ‘‘ignorance aboutL. ’’

FIG. 3. The expectation valueS2(L,L) of the number variance
z(L) as a function ofL for various coupling strengthsL ranging
from 2 GOE to 1 GOE behavior. The abscissa has been limite
L<5 because the data analyzed below are in the range of 1<L
<5.
.

The definition of m(L) deserves a detailed commen
First of all, the natural choice ofm(L) is not the constant
function because a reparametrizationL→l(L) will trans-
form m(L) into

mT~l!5m~L!UdL

dl U. ~11!

Unless the transformation is linear, it turns a uniform dist
bution into a nonuniform one.

We definem(L) such that the entropy ofP(Luz) does not
depend on the true valueL̂ that governs the distribution o
the dataz5(z1 , . . . ,zM). The data follow the distribution
W(zuL̂). Although L̂ is not known, it is supposed to be
well defined number. If it is shifted to another valueL̂8 and
one takes new dataz8 and constructs the posterior distribu
tion P85P(Luz8) from the new data, then one can expe
P8 to be shifted with respect toP. The distributionP8 will
be centered in the vicinity ofL̂8 rather thanL̂. However, we
want to make sure that the ‘‘spread’’ ofP8 is the same as
that of P; that is, the entropy ofP andP8 shall be the same
for a given number of dataM. In this sense, no value ofL is
a priori preferred over any other one.

The definition of the entropy requires some attention. T
usual formula2*dLP ln P for the entropy is of too re-
stricted validity in the present context, because this exp
sion is not invariant under a reparametrizationL→l(L).
The general expression for the entropy is

H52E dLP~Luz!ln
P~Luz!

m~L!
, ~12!

which is independent of a reparametrization@23,24#, because
the transformations of both distributions,P and m, are per-
formed according to Eq.~11!. Therefore the derivative
udL/dlu drops out of the argument of the logarithm an
expression~12! is left unchanged by the substitutionL
→l.

It is possible to definem such thatH is independent of the
true valueL̂, if W possesses the property introduced in Re
@24–26# called form invariance. It states that there is a gro
of transformationsGr such that the simultaneous transform
tion of z andL leavesW invariant, i.e.,

W~GrzuGrL!dGrz5W~zuL!dz. ~13!

The group parameterr must have the same domain of de
nition as the hypothesisL. If one choosesm(L) to be the
invariant measure of the group then it is not difficult to sho
that the posterior distributionP also possesses the invarian
~13!. This entails thatH is invariant under any transforma
tion z→Grz of the data. However, by Eq.~13! this is just
what happens to a given data set if the true valueL̂ is shifted
to L̂85G r

21L̂.
There is a handy formula that yields the invariant meas

without any study of the structure of the group. It is

m~L!5UM 21E dMzW~zuL!
]2

]L2
ln W~zuL!U1/2

~14!

to
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and was proposed by Jeffreys@27# even before form invari-
ance was discussed.

Not every conditional distributionW possesses a symme
try ~13!. Even if this is not the case, expression~14! ensures
that H is approximately independent of the true value ofL.
This holds in the following sense: For everyL̂ one can re-
place the correct distributionW(zuL) by an approximation
Wapp(zuL) which is form invariant. The approximate an
the correct distributions agree within the fourth order ofL

2L̂. Equation~14! yields the invariant measure of the a
proximation to within the third order ofL2L̂ @28#.

In summary: expression~14! ensures that no value ofL is
a priori preferred over any other one if the form invarian
~13! exists. If there is no form invariance, expression~14!
approximately ensures this. Therefore Eq.~14! is the best
recommendation in any case.

Not the group theoretic argument Jeffreys’ rule, or info
mation theoretic arguments are to the best of our knowled
new in the discussion of the Bayesian prior. However,
way in which they are related justifies the present digress
on a fundamental issue. We omit to show how and why
present arguments are related to the geometric considera
which were introduced by Amari@29# and are currently pu
forward by Rodriguez@30#. These authors agree on the res
~14!.

The posterior distributionP is used to construct an inter
val of error often called a Bayesian interval. It is the short
interval that containsL with probabilityK. The usual error is
defined with the confidenceK50.68.

The posterior distributionP approaches a Gaussian f
M→` provided that the true value ofL is not on the border
of the domain of definition ofL. One can prove that the
variance of the Gaussian is proportional toM 21. Hence,
with increasingM the posterior distributionP will become so
narrow thatm changes very little in the domain whereP is
essentially different from zero. Note thatm does not depend
on M. Thenm drops out of expression~9!. If this happens,
the present Bayesian analysis becomes equivalent to ax2 fit
of S2(L,L) to the experimental pointsz(L). The standard
procedure of thex2 fit can, e.g., be found in Ref.@31#. It
does not require a prior distribution.

If P is not Gaussian, thex2 fit yields meaningless confi
dence intervals. Then Bayesian inference cannot be
passed. In the example presented below this happens in
limit of small coupling between the resonators: Eventua
the posterior distributionP decreases monotonically. The e
periment is then compatible with zero coupling because
shortest confidence interval contains the pointL50 for any
K. The point of zero coupling is on the border of the doma
of definition of L.

V. DISTRIBUTION OF THE DATA

Spectral fluctuation properties can only be studied a
secular variations of the level density have been remov
i.e., after the frequency scale has been transformed such
the level density becomes unity within the interval cover
by the experiment. This procedure, often called ‘‘unfolding
the spectrum, is a standard one@32# and has been applied.

After this we defined, for a given interval of lengthL, NL
-
e,
e
n
e
ns

t

t

y-
the
,

e

r
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hat
d

adjacent intervals. The intervals did not overlap and no sp
was left in between them. This means

NL5F length of spectrum

L G , ~15!

where the square brackets designate the largest integer
tained in the fraction. For each interval, the numbern(L) of
levels occurring within it was counted and the squared d
ference@n(L)2L#2 was averaged over theNL intervals. This
defines the averagê& introduced in Eq.~4! and, hence, the
‘‘event’’ z(L). This procedure was repeated for a set of v
uesLk , k51, . . . ,M , to be defined below. In this way,M
events

zk[z~Lk! ~16!

were obtained.
The Bayesian procedure outlined in the previous sec

requires that one assigns a probability distributionwk(zkuL)
to each event. Thezk are statistical quantities in the follow
ing sense: If another spectrum would be provided that
the same statistical properties as the measured one an
datazk would be constructed in the same way as above, t
would of course not coincide with the data obtained from
actually measured spectrum, precisely because the level
subject to statistical fluctuations. If one could go through
ensemble of spectra in this way, one would obtain an
semble of datazk . We are looking for the distributionwk of
this ensemble. Since there is only the single measured s
trum and since no theory yieldingwk is available, we have
generated the distribution ofzk by Efron’s bootstrap method
@33#. This method generates the distribution numerically
drawing at random and independently a new set ofNLk

in-

tervals from theNLk
original intervals. A newzk is produced

from this new set of intervals. Repeating this many times
distribution of zk is generated which is identified with th
distribution wk of the zk . Note thatNLk

is always large,

namely,NLk
*300.

For Lk>1, the distributionwk was in this way found to
be a x2 distribution with NLk

degrees of freedom, which
intuitively seems reasonable. They are close to Gauss
with variance 2/NLk

As mentioned above in Sec. III, th
mean value of this distribution is

zk5E dzzwk~zuL!5S2~Lk ,L!. ~17!

Since S2 depends onL, see Eq.~5!, the distributionwk
depends onL.

We have restricted the analysis toLk>1. In the domain
of Lk,1, the number variance so weakly depends on
parameterL that one does not give away much informatio
by this restriction.

In order to avoid an unnecessarily complicated distrib
tion of thezk , we want to be sure that there are no corre
tions betweenzk andzk8 , for kÞk8. It was therefore neces
sary to determine the minimume of the distanceuLk2Lk8u
that would still allow for statistically independentzk , zk8 .
Indeed if uLk2Lk8u is very small then most of the interval
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PRE 62 1901ANALYZING SYMMETRY BREAKING WITHIN A . . .
associated withLk will almost coincide with an interval as
sociated withLk8 . As a consequence, many of the numb
n(Lk) found in the intervals associated withLk will occur
also in the intervals associated withLk8 . Hence,zk will not
be independent fromzk8 . In order to determinee, we have
calculatedz(L) as a function ofL in steps of 0.001. For a
small range ofL, the result is given in Fig. 4. Indeed over
distance of a few times this step width,z(L) changes little. If
uL2L8u is many times this step width, thenz(L) andz(L8)
show independent fluctuations. In principle, one can st
the decay of the correlations as a function ofuL2L8u by
constructing the autocorrelation function ofz(L). We have
contented ourselves to inspect Fig. 4 and similar plots
different domains ofL. It seems obvious from Fig. 4 that th
typical width of the structures is less than 0.025. This ju
fies to set

e50.025, ~18!

to define

Lk511~k21!e, k51,2, . . . ,M , ~19!

and to assume thatzk is statistically independent ofzk8 for
kÞk8.

There is an upper limitLmax of L that one must be awar
of: The spectral fluctuations of levels from billiards agr
with those of random matrices—i.e., they are universa
within intervals of a maximum length which is inverse
proportional to the length of the shortest periodic orbit in t
billiard @34,35#. This requiresLmax55 here.

FIG. 4. The experimental estimatez(L) of the number variance
see Eq.~4!, as a function ofL calculated in steps ofDL50.001.
The typical width of the structures in this fluctuating function d
termines the rangee over whichz(L) andz(L1e) may be corre-
lated. Conversely, it serves to estimate the minimum distance
betweenL and L8 which must be respected ifz(L) shall not be
correlated withz(L8).
s

y

r

-

Hence, dataz(L) for 1<L<5 were used to obtain the
results presented below. This means that by Eqs.~18!,~19!
the number of statistically independent data points isM
5161.

Let us note that one can devise definitions of the se
intervals with given lengthL other than adjacent intervals, a
was done here. One can admit a certain overlap betw
them as suggested in Ref.@36# or one can place them a
random@37#. We have tried these alternatives and have m
sure that they do not significantly change the results p
sented below.

VI. RESULTS

The dataz(Lk), k51, . . .,161, are given on Fig. 5 for the
six different couplings that were experimentally investigate
The coupling strength increases from top to bottom on F
5. Its experimental realization is indicated by the two nu
bers (x1 ,x2) in brackets that label the six parts of the figur
They are explained as follows: The billiards were position
with their flat sides against each other. Holes were dril
through the walls of the resonators such that a niobium
could be inserted perpendicularly to the plane of the billia
through the (g51.8) stadium into the (g51) stadium. The
coupling strength is determined by the depthsx1 andx2 by
which the niobium pin penetrates into the (g51) and the
(g51.8) stadium, respectively. These depths are given
(x1 ,x2) in mm. The net height of the (g51) stadium was 7
mm and that of the (g51.8) stadium was 8 mm. For th

FIG. 5. The number variancez(L) ~crosses! and its expectation
value S2(L,L) ~full lines! for various experimental coupling
(x1 ,x2). The dashed lines display the 2 GOE behavior, i.
S2(L,0). The dotted lines give the 1 GOE behavior, i.e.,S2(L,`).
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strongest coupling—i.e., the bottom part of the figure—
second niobium pin, penetrating all the way through b
resonators, was added. The coupling~0,8!—i.e., the top part
of the figure—is the case where the billiards should be
coupled.

The dashed lines on Fig. 5 illustrate the limiting case o
GOE behavior, i.e., expression~5! with L50. The dotted
lines show the limit of 1 GOE behavior, i.e., expression~6!.
Obviously, all six cases are not easily distinguished from
2 GOE behavior, i.e.,L50.

Prior to the analysis it was therefore not clear whether
six experimental cases would yield distinguishable coupl
parametersL and whether these would even be distinguis
able from zero. The latter question means according to S
IV: It was not clear whether ax2 fit would be appropriate.
Therefore the whole analysis was based on Bayesian in
ence. The prior distribution was calculated from Eq.~14!.
The probability distributionwk(zkuL) of the data has bee
defined in Sec. V. Whether form invariance exists has
been investigated. The scatter of the data is quite large
pecially for L close to 5. These fluctuations are assessed
the distributionwk(zkuL). The fluctuations increase with in
creasingL. This is reflected by the fact thatwk was found to
be ax2 distribution withNLk

degrees of freedom. Its relativ

rms deviation isA2/NLk
and NLk

decreases with increasin

Lk , see Eq.~15!. Despite the scatter of the data the coupli
parameter is so well determined that the analysis dis
guishes the six experimental cases from each other bec
the number of data points is large enough.

For all cases except coupling~0,8!, the posterior distribu-
tion ~9! turned out to be Gaussian. This is illustrated on F
6 for the coupling~5,3!. In the case of coupling~0,8!, which
is expected to show 2 GOE behavior, the posterior distri
tion of L is the monotonically decreasing function of Fig.
This is reasonable because the shortest confidence int
on L will, for any confidence, include the possibility ofL

FIG. 6. Posterior distribution for the coupling~5,3!, i.e., the
second case on Fig. 5 and in Table I. The centerL0 and the rms
deviation of the Gaussian are specified.
a
h

-

2

e

e
g
-
c.

r-

t
s-
y

-
se

.

-

val

50. Hence, the distribution of Fig. 7 allows to state only
upper limit for L.

The results of the Bayesian analysis are summarized
the first five columns of Table I. The first column characte
izes the experimental realization of the coupling as explai
above. In the second column, the coupling parameterL is
given. It can also be expressed~in the third column! by the
ratio G↓/D, see Eq.~3!. Alternatively, see Eq.~2!, the com-
binationav/D of parameters of the model of Eq.~1! is given
in the fourth column. By puttingD equal to the mean leve
distanceD510.7 MHz of the experiment, one obtains in th
fifth column the rms coupling matrix elementav in MHz.

In the case of coupling~0,8!, where only an upper limit
for the coupling can be given, we have done so, for
confidence of 68%. In all other cases the centerL0 of the
Gaussian posterior is given together with the rms deviati
this defines a 68% confidence interval.

According to Sec. IV, Gaussian posteriors suggest t
one may replace Bayesian inference by ax2 fit which is
simpler. A x2 fit has been performed in all cases and t
results are given in the last two columns of the table. T
sixth column displays the normalizedx2 value. For a reason
able fit, it should lie between 0.84 and 1.16. This follow
from the fact that the distribution ofx2 is here approximately
Gaussian with rms value @2/(number of degrees o
freedom)#1/25(2/160)1/2'0.16. The seventh column give
the coupling parametersL which the fit has found. They are
compatible with the Bayesian results except for the first en
~0,8!. Here the fit puts out a negative value, i.e., it does
produce a meaningful result. This was expected from
discussion in Sec. IV.

VII. DISCUSSION

The emphasis of the present paper is on the Baye
analysis of the data. Although Bayes’ theorem provide
clear and simple prescription of how to draw conclusio
from data about a hypothesis conditioning the data, its

FIG. 7. Posterior distribution for the coupling~0,8!, i.e., the case
where the coupling is expected to be zero. The probability in
grated fromL50 to 0.000 85~marked by an arrow! is 68% .
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TABLE I. Parameters found for six different experimental couplings. The results have been obtain
Bayesian inference as outlined in Sec. IV. The column headings are explained in the text.

Expt. coupling L G↓/D av/D av x2 Lfit

~0,8! <0.00085 <0.005 <0.029 <0.31 1.14
~5,3! 0.01160.002 0.0760.01 0.10560.008 1.1260.09 0.90 0.01360.002
~4,4! 0.01760.002 0.1160.01 0.13060.007 1.3960.07 1.04 0.01960.002
~5,8! 0.03060.002 0.1960.01 0.17360.006 1.8560.06 1.11 0.03360.002
~6,8! 0.03260.002 0.2060.01 0.18060.006 1.9360.06 1.47 0.03760.003

~6,8!1~7,8! 0.04060.002 0.2560.01 0.20060.006 2.1460.06 1.24 0.04460.002
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was hampered for a long time by the difficulty to define t
prior distributionm of the hypothesis. Equation~14! is a very
general definition ofm. It applies even to cases where th
variablez of the events is discrete@the integral in Eq.~14!
then means a sum#. The prior distribution~14! ensures that
the amount of information one gets on the hypothesisL is, at
least approximately, independent of the true value ofL.

Supplemented by Eq.~14!, Bayes’ theorem provides th
generalization of all methods of inference that rely on Gau
ian approximations. The method of the least squares,
belongs to them. It does not requirea priori distribution of
the parameter to be determined. In the present paper th
lation between Bayesian inference andx2 fit has been dis-
cussed. A criterion has been given under which Bayes
inference is approximately equivalent to the simpler fit p
cedure. This criterion has been substantiated numericall

The present formalism especially provides the corr
treatment of null experiments, i.e., of experiments that yi
only an upper limit for the parameter of interest. An exam
for this situation has been presented. By the same token
formalism of Sec. IV provides the decision whether the p
rameter is compatible with zero.

The physical results of the present analysis show that
strongest coupling realized in the microwave experiment@1#
has about the same size as the coupling found in Ref.@18# to
occur between states of different isospin in26Al. The stron-
.
n

s-
g.,

re-

n
-

t
d
e
he
-

e

gest coupling treated in the present paper causes about
mixing between the two classes of levels, i.e., a state wh
can be approximately assigned to the (g51) stadium con-
tains about 25% strength from the configurations of theg
51.8) stadium, and vice versa. This is the interpretation
the value ofG↓/D in Table I. Data that are as numerous a
precise as those of Ref.@1# allow to detectG↓/D ten times
smaller than the result of Ref.@18#, according to the presen
analysis. Nuclear data, which never provide as large
sample of states as the experiment@1#, would not allow to
detectG↓/D50.07 ~the smallest detected mixing in Table!
from the level fluctuations. The precision obtained in th
experiment has allowed the detection of the subtle dep
dence of the level fluctuations on the breaking of a symme
which is predicted by the random matrix model@18,13,14#.
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