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Analyzing symmetry breaking within a chaotic quantum system via Bayesian inference
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Bayesian inference is applied to the level fluctuations of two coupled microwave billiards in order to extract
the coupling strength. The coupled resonators provide a model of a chaotic quantum system containing two
coupled symmetry classes of levels. The number variance is used to quantify the level fluctuations as a function
of the coupling and to construct the conditional probability distribution of the data. The prior distribution of the
coupling parameter is obtained from an invariance argument on the entropy of the posterior distribution.

PACS numbegps): 05.45~a, 02.50.Wp, 11.30.Er

[. INTRODUCTION In the previous worK 1], the level positions of a system
have been measured that consisted of tquarters of sta-

The subject of the present paper is Bayesian inference atium billiards coupled electromagnetically. See Fig. 1. The
applied to the experiment of Rdfl] in order to extract the technical realization of the coupling has been described in
mean square matrix element coupling two chaotic classes dkef.[1]. In the frequency range of 0 to 16 GHz, the complete
guantum states. The Bayesian procedure described belospectra of the two stadia displayed 608 and 883 resonances
does not contain any arbitrary element: The priorin the (y=1) stadium and the=1.8) stadium, respec-
distribution—sometimes left to the educated guess of thdively. The mean level spacing 3=10.7 MHz.
analyst{2]—is determined by an invariance argument on the In Fig. 2, small pieces of spectra are shown for three
entropy of the posterior distribution. different couplings. The arrows shall help to recognize that

The present paper is organized as follows. In Sec. I, walue to the coupling the resonances are shifted by statistically
briefly describe the experiment with superconducting microvarying amounts.
wave resonators that has provided the data for the present This system simulates two symmetry classes of levels
analysis. The random matrix model for the coupling of twocoupled by a symmetry breaking interaction. Each class of
symmetry classes of chaotic states is defined in Sec. lll. llevels, represented by each of the uncoupled stadia, can be
yields, in analytic form, the dependence of the observable ordentified with a chaotic system of well defined symmetry
the coupling strength which is to be determined. Bayesiataving the properties of the GOE. The entire system of the
inference, especially the definition of the prior distribution, iscoupled stadia no longer has the universal properties of the
discussed in Sec. IV. The conditional probability distribution GOE. Its properties are a function of a suitably defined cou-
of the data is defined in Sec. V. The results are given in Se@ling parameter\.

VI. A discussion in Sec. VII concludes the paper. The investigation of symmetry breaking in chaotic quan-
tum systems is not a recent challenge to physidi¢ts.

I EXPERIMENT WITH COUPLED MICROWAVE Good egamples qf the gxperimental and theoretical _effort.s

' RESONATORS alre_ady invested into th_ls p_roblt_am are the cases of isospin
mixing [16—18, parity violation in heavy nuclej19], and

Billiards provide models of classical and quantum me-the breaking of certain atomic and molecular symmetries
chanical chaos. They have been studied extensively, see th€5,20. The experiment performed in Reffl] provides a
review article [3]. Quantum mechanical billiards can be general model for these case studies.
simulated by flat microwave resonatd#s-7]. One class of In the present paper, we do not describe any one of the
these “quantum” billiards are the Bunimovich stadium bil- specific case studies; we shall not even describe in more
liards [8] experimentally investigated in Reflsl,7,9-13.

These investigations show that the fluctuation properties y=1 y=18
of the quantum chaotic systems with well defined symme-
tries are described by Dyson’s matrix ensemijis In the E @B o ?
case of the stadium billiards, the correct description is pro-8 (o] é‘ [e][e]
vided by the Gaussian orthogonal ensem@&OE). This ® (]
means, e.g., that the fluctuations of the positions of the - - =
400mm 560mm

eigenmodes—shortly the level fluctuations—are the same as
the fluctuations of the eigenvalues of random matrices drawn g, 1. Shapes of the two coupled stadium billiards. The circles
from the GOE. In order to assess these fluctuations, variougside the squares indicate the positions of the antennas used to
statistics have been defined, such as the distance of neigbcatter microwave power through the system in order to find the
boring levels or the variance of the number of levels in aeigenfrequencies of the entire system. The parameisrthe ratio
given interval. The expectation values of these statistics havieetween the length of the rectangular part and the radius of the
been worked ouf13,14] for comparison with data such as circular part of the resonator. The vertical heights of the stadia are
the present ones. given in Sec. VI.
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0 T T their spectra have the same length. The details are given in
coupling 1 Ref. [14]. This model is a special case of the model by

-30 Rosenzweig and Porté¢t5).
The parameter that governs the level statisticsrigD
-60 rather thana. Here,D is the mean level distance &f. See
Refs.[14,18. In the sequel, the coupling parameter
-90
o av\?
2 -30 A= (3 2
ol
560 . . . .
o8 will be used. Often the coupling strength is also parametrized
_g0 in terms of the spreading width
2
~30 rizzw(as) —27AD. @3
-60
The statistic used in the present paper in order to charac-
-90 —— terize the behavior of the data, is the so-caligdstatistic or
10.55 10.56 10.57 10.58 10.59 number variance. It is the varianeél) of the numbemn(L)
Frequency (GHz) of levels found in an interval of lengthD, i.e.,

FIG. 2. Three spectra, within a small range of frequencies, taken
at different couplings between the two resonators. The coupling Z(L):<(n(|-)_|-)2>- (4)
increases from top to bottom. Its notationy) is explained in Sec.
VI. The arrows shall help to recognize the shifts of a few reso-Here, the angular brackets) denote the average over all
nances. pieces of spectra of length that have been cut out of the

entire experimental spectrum. The procedure is described in
detail the model experiment of Rdfl]. We rather describe Sec. V.

in the next section the model experiméi in an abstract The expectation valug(L) with respect to the statistical
mathematical form and then turn to its analysis in Secs. IV—nsemble defined by Eql) is called32(L,A). This func-
VL. tion has been calculated by Frenehal.[13] and by Leitner

and co-worker$14]. According to Ref[14], it is
1. MATHEMATICAL MODEL

OF SYMMETRY BREAKING 1 722
IN' A CHAOTIC QUANTUM SYSTEM S2L,A)=2z(L)=3%L,*)+ —In| 1+ ———— .
) ) w? 4(7+ m2N)?
In the absence of coupling each eigenstate of the system (5)

of Fig. 1 can be characterized as belonging to either resona-
tor 1 or resonator 2. This is equivalent to the assignment of fere,32(L,) is the expression

guantum numbet. The spectrum of states of eaghhas the

statistical properties of the eigenvalues of matrices drawn 5 1

from the GOE. The superposition of the two spectra displays 2 _ < Trai 2
what we shall call 2 GOE behavior. It can be described by a L) 7.,Z[In(zqﬂ‘)jL vetlt Z[SI(WL)]
block-diagonal Hamilton operator where each block is an
element of the GOE, hence, by the first term of the Hamil-

7T . .
tonian - ESI(WL)-COS{ZWL)-CI(Z#L)

@ 0 @ % +772L[1—%Si(277L)“. (6)

H= +a Y

0 @ vt @ It describes the 1 GOE behavior. The second term on the
right-hand side of Eq(5) obviously vanishes foA — .
For a# 0, the off-diagonal matri¥/ in the second term on In Eqg. (6), ye is Euler's constant and Si, Ci are the sine

the right-hand sidérhs) provides the coupling between both and cosine integrals defined, e.g., in paragraph 8.23 of Ref.
symmetry classes. It has Gaussian random elements, as tf#2]. The parameter is a function of the ratio between the
GOE blocks. If the two GOE blocks have the same dimen-dimensions of the two GOE blocks in the first term of Eq.
sion then their elements as well as the elementé gifiall all  (1). In the present situation, it is equal to 0.74.

have the same rms value. Thes 1 turnsH as a whole into The functionX? depends on the coupling parameters

a GOE matri 21]. The resulting spectrum displays what we is illustrated by Fig. 3. Therefora can be inferred from the
call 1 GOE behavior. If the two GOE blocks have different experimental number variancgL). The principle of this
dimensions, then the rms values must be chosen such thiaference is described in the next section.
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4 T T The definition of u(A) deserves a detailed comment.
C A=0 ] First of all, the natural choice of(A) is not the constant
12 L 1 function because a reparametrizatidan-X\(A) will trans-
- 2 GOE 009 1 form w(A) into
CF - 7025 ) (A)‘dA (11
B -~ P 4 = - -
/<\1 08 [ ////-/’/ 1.00_.3 o )

- C s ] S : . -
— L o O 4 Unless the transformation is linear, it turns a uniform distri-
N— - a B . . .
~n 06 - s -] bution into a nonuniform one.

N C /// T GOE ] We definew(A) such that the entropy ¢%(A|z) does not

C 2 ] R

04 = [/r - depend on the true valugé that governs the distribution of
r /’ . the dataz=(zq, ...,zy). The data follow the distribution

02 B/ - W(z|A). Although A is not known, it is supposed to be a
v ] well defined number. If it is shifted to another vali¢ and

P4 Y0 LA T T T T T T S T MR one takes new dat@a and constructs the posterior distribu-
0 1 = 3 4 5 tion P’=P(A|z') from the new data, then one can expect

L P’ to be shifted with respect tB. The distributionP’ will

be centered in the vicinity ok’ rather tham . However, we
. 2 . L
FIG. 3. The expectation valuge“(L,A) of the number variance want to make sure that the “spread” &' is the same as

z(L) as a function ofL for various coupling strength& ranging . . ,
from 2 GOE to 1 GOE behavior. The abscissa has been limited téhat of P; that is, the entropy oP andP” shall be the same

L=<5 because the data analyzed below are in the range<df 1 oragiven number of datil. In this sense, no value df is
<5 a priori preferred over any other one.

The definition of the entropy requires some attention. The
IV. BAYESIAN INFERENCE usual formula—fdAPInP for the entropy is of too re-
stricted validity in the present context, because this expres-
Suppose that a set of experimental datga, k  sion is not invariant under a reparametrizatidn-X\(A).

=1, ... M, is given which depends on a parametein the  The general expression for the entropy is
sense that the probability distributiom, of the eventz, is

conditioned by the hypothesis, P(Alz)

u(A)

which is independent of a reparametrizatj@3,24], because
The eventg, shall be statistically independent of each other.the transformations of both distributior8,and u1, are per-

H:—f dAP(A|z)In (12)

Wk:Wk(Zk|A)' (7)

The joint distributionW of the z,, k=1, ... M, is then formed according to Eq(11). Therefore the derivative
|dA/d\| drops out of the argument of the logarithm and
M expression(12) is left unchanged by the substitution
W(z|A)=T1 wi(zdA). ® N . .
k=1 It is possible to defing. such thatH is independent of the

true valueA , if W possesses the property introduced in Refs.
Bayes’ theorem follows the distributioR(A[z) of A under  [24-2¢ called form invariance. It states that there is a group
the condition that the dataare given via of transformationsy, such that the simultaneous transforma-
tion of zand A leavesW invariant, i.e.,
p(A[z)= NEHDMA) ©
m(z) : W(G,z|G,A)dG,z=W(z|A)dz (13

The group parametgr must have the same domain of defi-
nition as the hypothesid. If one choosesw(A) to be the
invariant measure of the group then it is not difficult to show
that the posterior distributioR also possesses the invariance
(13). This entails thaH is invariant under any transforma-
tion z— G,z of the data. However, by Eq13) this is just

what happens to a given data set if the true valuis shifted
m2)= [ dAWZA) (A, (10 t0A'=g, A,
There is a handy formula that yields the invariant measure
without any study of the structure of the group. It is

Here, u(A) is the so-called prior distribution. It is the mea-
sure of integration in the space &4f One must define it such
that it represents ignorance an in a sense described below.
The functionm(z) is the prior distribution ofz It is not
independent oju; it is given by the normalizing integral

In the framework of the logic underlying E), a probabil-
ity distribution of, say A is considered to represent the avail-
able knowledge om\ and the prior distribution corresponds w(A)=
to “ignorance aboutA.”

2 12
MflJ’ dMzW(z|A) —InW(z|A) (14)
%
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and was proposed by Jeffre}&7] even before form invari- adjacent intervals. The intervals did not overlap and no space
ance was discussed. was left in between them. This means
Not every conditional distributiolV possesses a symme-
try (13). Even if this is not the case, expressidd) ensures
thatH is approximately independent of the true valueAof L

This holds in the following sense: For evelly one can re- _ _

place the correct distributioV(z|A) by an approximation Where the square brackets designate the largest integer con-

W,,(z|A) which is form invariant. The approximate and tained in the fraction. For each interval, the numbgr) of

the correct distributions agree within the fourth orderfof levels occurring v2v|th|n it was counted and the squared dif-

— A. Equation(14) yields the invariant measure of the ap- fere_:nce[n(L)—L] was averaged.over 4 intervals. This
imation to within the third order of — A [28] defines the averagg) introduced in Eq(4) and, hence, the

proxima ) ) . _ “event” z(L). This procedure was repeated for a set of val-

In summary: expressiofl4) ensures that no value of is

> . . . uesL,, k=1, ... M, to be defined below. In this waw
a priori preferred over any other one if the form invariance events
(13) exists. If there is no form invariance, expressidm)
approximately ensures this. Therefore Ef) is the best z2=2(L}) (16)
recommendation in any case.
Not the group theoretic argument Jeffreys’ rule, or infor-\yere obtained.
mation theoretic arguments are to the best of our knowledge, The Bayesian procedure outlined in the previous section
new in the discussion of the Bayesian prior. However, therequires that one assigns a probability distributiaiz,|A)
way in which they are related justifies the present digressiofy each event. The, are statistical quantities in the follow-
on a fundamental issue. We omit to show how and why thgng sense: If another spectrum would be provided that had
present arguments are related to the geometric consideratiofie same statistical properties as the measured one and the
which were introduced by Amaf®9] and are currently put gataz, would be constructed in the same way as above, they
forward by Rodrigue30]. These authors agree on the resultyyoyd of course not coincide with the data obtained from the
(14). o i actually measured spectrum, precisely because the levels are
The posterior distributiof” is used to construct an inter- gypject to statistical fluctuations. If one could go through the
val of error often called a Bayesian interval. It is the shortesinsemble of spectra in this way, one would obtain an en-
interval that containd. with probabilityK. The usual erroris = semple of data, . We are looking for the distributiow, of
defined with the confidencé=0.68. _ this ensemble. Since there is only the single measured spec-
The posterior distributiorP approaches a Gaussian for trym and since no theory yielding, is available, we have
M —cc provided that the true value df is not on the border  generated the distribution af by Efron’s bootstrap method
of the domain of definition ofA. One can prove that the [33]. This method generates the distribution numerically by
variance of the Gaussian is proportional & *. Hence, grawing at random and independently a new seNpf in-
\r/]vzlitrfz(;nwcrtﬁgflng\/l the posterior d'St.”bu“Oﬁ’ will .become SO tervals from theN_ original intervals. A newg, is produced
w changes very little in the domain wheReis ) ko ) : ,
essentially different from zero. Note thatdoes not depend from this new set of intervals. Repeating this many times, a
distribution of z, is generated which is identified with the

on M. Thenu drops out of expressio(®). If this happens, > 2" )
the present Bayesian analysis becomes equivalentyfofi distribution w of the z,. Note thatNLk is always large,

of 3%(L,A) to the experimental pointg(L). The standard namely,N, =300.

(15

length of spectruT
3 :

procedure of they? fit can, e.g., be found in Ref31]. It For L,=1, the distributionw, was in this way found to
does not require a prior distzribution. be ax? distribution with N, degrees of freedom, which
If P is not Gaussian, thg“ fit yields meaningless confi- jyyitively seems reasonable. They are close to Gaussians
dence intervals. Then Bayesian inference cannot be b¥gith variance 24, As mentioned above in Sec. IlI, the
. ,

passed. In the example presented below this happens in trr]ﬁeean value of this distribution is
limit of small coupling between the resonators: Eventually,

the posterior distributio® decreases monotonically. The ex- o

periment is then compatible with zero coupling because the zk:f dzzw(z]A)=32(Ly,A). a7
shortest confidence interval contains the pairt O for any

K. The point of zero coupling is on the border of the domainSince 32

of definition of A depends onA, see Eq.(5), the distributionwy

depends on\.
We have restricted the analysisitg=1. In the domain
of L,<1, the number variance so weakly depends on the
parameterA that one does not give away much information
Spectral fluctuation properties can only be studied afteby this restriction.
secular variations of the level density have been removed, In order to avoid an unnecessarily complicated distribu-
i.e., after the frequency scale has been transformed such tht&n of thez,, we want to be sure that there are no correla-
the level density becomes unity within the interval coveredtions betweery, andz, , for k#Kk’. It was therefore neces-
by the experiment. This procedure, often called “unfolding” sary to determine the minimum of the distancel,—L/|
the spectrum, is a standard of82] and has been applied. that would still allow for statistically independent, z, .
After this we defined, for a given interval of lengith N, Indeed if|L,—L,| is very small then most of the intervals

V. DISTRIBUTION OF THE DATA
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E E 1.0 f_ coupling (0,8) | . ok y&xwﬂ;
1.3 — c
B ] 0.5 E
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~ % ] SRS
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N A ~Z
/ §o) I~
' ¢ o 05 F
- . =
B . —~ 0.0 ~, (5,8)
B i < ;
09 - ; ] — 0.5
C ] Nl
- ] 2, 0.0
0‘8 _I 111 I L1 1 1 | 111 I 111 | I 1 1 I_ O 5
4.90 4.92 4.94 4.96 4.98 5.00 ’
L 0.0
FIG. 4. The experimental estimatél) of the number variance, 05
see Eq.(4), as a function ofL calculated in steps aAL =0.001. | | | |
The typical width of the structures in this fluctuating function de- 00 L L L
termines the range over whichz(L) andz(L +€) may be corre- 0 1 2 3 4 5
lated. Conversely, it serves to estimate the minimum distance L
betweenL and L’ which must be respected #(L) shall not be
correlated withz(L'). FIG. 5. The number variancgL) (crossesand its expectation

value 2%(L,A) (full lines) for various experimental couplings

associated with_, will almost coincide with an interval as- (X21.X2)- The dashed lines display the 2 GOE behavior, i.e.,
sociated withL . . As a consequence, many of the numbers> (L:0)- The dotted lines give the 1 GOE behavior, (L, ).
n(L,) found in the intervals associated with, will occur

also in the intervals associated with, . Hence,z, will not Hence, data(L) for 1sL<5 were used to obtain the
be independent from, . In order to determine, we have results presented below. This means that by E#8),(19)
calculatedz(L) as a function ofL in steps of 0.001. For a the number of statistically independent data pointsvis
small range oL, the result is given in Fig. 4. Indeed over a =161.

distance of a few times this step wid#{L) changes little. If Let us note that one can devise definitions of the set of
|L—L’| is many times this step width, thexfL) andz(L") intervals with given length. other than adjacent intervals, as
show independent fluctuations. In principle, one can studyvas done here. One can admit a certain overlap between
the decay of the correlations as a function|bf-L’| by ~ them as suggested in R4B6] or one can place them at
constructing the autocorrelation function zfL). We have random[37]. We have tried these alternatives and have made
contented ourselves to inspect Fig. 4 and similar plots fogure that they do not significantly change the results pre-
different domains of.. It seems obvious from Fig. 4 that the Sented below.

typical width of the structures is less than 0.025. This justi-

fies to set VI. RESULTS

€=0.025, (18 The datez(L,), k=1, ...,161, are given on Fig. 5 for the
six different couplings that were experimentally investigated.
The coupling strength increases from top to bottom on Fig.
5. Its experimental realization is indicated by the two num-
bers (4 ,X,) in brackets that label the six parts of the figure.
k=12,... M, (19 They are explained as follows: The billiards were positioned
with their flat sides against each other. Holes were drilled
and to assume thaj is statistically independent &, for  through the walls of the resonators such that a niobium pin
k#k'. could be inserted perpendicularly to the plane of the billiards
There is an upper limit 5, of L that one must be aware through the ¢=1.8) stadium into the ¥=1) stadium. The
of: The spectral fluctuations of levels from billiards agreecoupling strength is determined by the depkhsandx, by
with those of random matrices—i.e., they are universal—which the niobium pin penetrates into the=1) and the
within intervals of a maximum length which is inversely (y=1.8) stadium, respectively. These depths are given by
proportional to the length of the shortest periodic orbit in the(x,,x,) in mm. The net height of they=1) stadium was 7
billiard [34,35. This required,,,=5 here. mm and that of the y=1.8) stadium was 8 mm. For the

to define

Le=1+(k—1)e,
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3 T T T T | T T T T I T T T T T T T T 1.5 T T T T T T T T T T T T
coupling (5,3) 1 I I
Ay+0=0.011+0.002 i \

~~ 7 /&\ i ( ) |
N r 7 — coupling (0,8
L | 1.0
<R ] = ]
Ao | al I ]
L 4 o) - 7
i f Lo |
O, L | — 05 _
— L i
O I T R | [ S T N N R N W | | ] 0000 I I I I Oll I I I Iolz I 03
0.0 05 1.0 15 2.0 ' '102 A ' ’

2
10 A FIG. 7. Posterior distribution for the couplirig,9), i.e., the case
FIG. 6. Posterior distribution for the coupling,3), i.e., the  where the coupling is expected to be zero. The probability inte-
second case on Fig. 5 and in Table I. The cemtgrand the rms  grated fromA =0 to 0.000 85marked by an arroyis 68% .
deviation of the Gaussian are specified.

=0. Hence, the distribution of Fig. 7 allows to state only an

strongest coupling—i.e., the bottom part of the figure—aUPPer limit for A. _ _ o
second niobium pin, penetrating all the way through both The re.su'ts of the Bayesian analy§|s are summarized in
resonators, was added. The couplifg®—i.e., the top part the first five columns of Table I. The first column character-

of the figure—is the case where the billiards should be dei_zes the experimental realization of the coupling as explained
coupled above. In the second column, the coupling paramatds
The dashed lines on Fig. 5 illustrate the limiting case of pgiven. llt can also be exrlmress(aq tlhe third colum?\ by the
GOE behavior, i.e., expressids) with A=0. The dotted rgno}“ /D, see Eq(3). Alternatively, see Eq(2), t_e com-
lines show the limit of 1 GOE behavior, i.e., expressién _bmatlonav/D of parameters (?f the model of EQ) is given
Obviously, all six cases are not easily distinguished from thé;. the fourih column. E’)f/ ;;uttm@ e_qual to the ‘g‘e‘?‘” I_everll
2 GOE behavior, i.eA=0. istanceD =10.7 MHz of the experiment, one obtains in the

Prior to the analysis it was therefore not clear whether thr-];'ﬁh column the rms cogplmg matrix element in MHZ.’ .
In the case of coupling0,8), where only an upper limit

six experimental cases would yield distinguishable couplin%r the coupling can be given, we have done so, for the
parameters\ and whether these would even be diStinngh'confidence of 68%. In all other' cases the cem@rof the

ab_le from zero. The latter queszthn means accordlng. o Se‘&Baussian posterior is given together with the rms deviation;
IV: It was not clear whether g~ fit would be appropriate. this defines a 68% confidence interval

Therefore the whole analysis was based on Bayesian infer- According to Sec. IV, Gaussian posteriors suggest that

ence. The prior distribution was calculated from Ef4). one mav replace Bavesian inference bw fit which is
The probability distributionw,(zJA) of the data has been y repia y OW
Flmpler. A x fit has been performed in all cases and the

defined in Sec. V. Whether form invariance exists has no . .

. X . ; results are given in the last two columns of the table. The
been investigated. The scatter of the data is quite large, €35 th column displavs the normalized value. For a reason-
pecially for L close to 5. These fluctuations are assessed b play :

the distributionw,(z,|A). The fluctuations increase with in- églﬁ] Ige Iftai??hua{?tkl:g 523’:’;&?0]?;‘21 izr;irle.;& :-or::ﬁn 1;otl(lac|>ws
creasingL. This is reflected by the fact that, was found to PP y

o S . - Gaussian with rms value [2/(number of degrees of
be ax“ distribution withN, degrees of freedom. Its relative freedom) /2= (2/160)/2~0.16. The seventh column gives

rms deviation is\/2/N_,_andN_, decreases with increasing the coupling parameters which the fit has found. They are
L¢, see Eq(15). Despite the scatter of the data the couplingcompatible with the Bayesian results except for the first entry
parameter is so well determined that the analysis distin(0,8). Here the fit puts out a negative value, i.e., it does not
guishes the six experimental cases from each other becaupeoduce a meaningful result. This was expected from the
the number of data points is large enough. discussion in Sec. IV.

For all cases except couplir{§,8), the posterior distribu-
tion (9) turned out to be Gaussian. This is illustrated on Fig.
6 for the coupling5,3). In the case of coupling0,8), which
is expected to show 2 GOE behavior, the posterior distribu- The emphasis of the present paper is on the Bayesian
tion of A is the monotonically decreasing function of Fig. 7. analysis of the data. Although Bayes’ theorem provides a
This is reasonable because the shortest confidence intervelear and simple prescription of how to draw conclusions
on A will, for any confidence, include the possibility &  from data about a hypothesis conditioning the data, its use

VII. DISCUSSION
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TABLE |. Parameters found for six different experimental couplings. The results have been obtained via
Bayesian inference as outlined in Sec. IV. The column headings are explained in the text.

Expt. coupling A /o av/D av X2 Asit
0,8 =<0.00085 =<0.005 =0.029 =<0.31 1.14
5,3 0.011+£0.002 0.020.01 0.105-0.008 1.12:0.09 0.90 0.0130.002
(4,9 0.017£0.002 0.1*0.01  0.13a@0.007 1.3%0.07 1.04 0.0120.002
(5,8 0.030£0.002 0.190.01 0.173%0.006 1.85-0.06 1.11  0.0330.002
(6,8 0.032£0.002 0.2:0.01  0.18a:0.006 1.930.06 1.47 0.03Z0.003

(6,9+(7,9 0.040+0.002  0.25:0.01 0.206-0.006  2.14-0.06 1.24  0.0440.002

was hampered for a long time by the difficulty to define thegest coupling treated in the present paper causes about 25%
prior distributionu of the hypothesis. Equatidi4) is a very  mixing between the two classes of levels, i.e., a state which
general definition ofu. It applies even to cases where the can be approximately assigned to thg=(1) stadium con-
variablez of the events is discretghe integral in Eq(14) tains about 25% strength from the configurations of the (
then means a sumThe prior distribution(14) ensures that =1.8) stadium, and vice versa. This is the interpretation of
the amount of information one gets on the hypothdsis, at  the value of'!/D in Table I. Data that are as numerous and
least approximately, independent of the true value\ of precise as those of Rdfl] allow to detectl''/D ten times

Supplemented by Ed14), Bayes’ theorem provides the smaller than the result of R€f18], according to the present
generalization of all methods of inference that rely on Gaussanalysis. Nuclear data, which never provide as large a
ian approximations. The method of the least squares, e.gsample of states as the experiméh}, would not allow to
belongs to them. It does not requiaepriori distribution of  detectI''/D=0.07 (the smallest detected mixing in Table |
the parameter to be determined. In the present paper the rFem the level fluctuations. The precision obtained in this
lation between Bayesian inference agdl fit has been dis- experiment has allowed the detection of the subtle depen-
cussed. A criterion has been given under which Bayesiadence of the level fluctuations on the breaking of a symmetry
inference is approximately equivalent to the simpler fit pro-which is predicted by the random matrix modi#B,13,14.
cedure. This criterion has been substantiated numerically.

The present formalism especially provides the correct
treatment of null experiments, i.e., of experiments that yield
only an upper limit for the parameter of interest. An example The authors thank Dr. T. Guhr for helpful discussions,
for this situation has been presented. By the same token, thend Professor H. A. Weidenrier for his support and ad-
formalism of Sec. IV provides the decision whether the pawice. They are indebted to Professor A. Richter and the
rameter is compatible with zero. members of the “chaos group” of the Institut rflkern-

The physical results of the present analysis show that thphysik at Darmstadt, and H. Alt, H.-D. (reR. Hofferbert,
strongest coupling realized in the microwave experinjght and H. Rehfeld, for their help and encouragement. One of the
has about the same size as the coupling found in[R8f.to  authors(C.1.B.) acknowledges the financial support granted
occur between states of different isospin’fi\l. The stron- by the Fritz Thyssen Stiftung and the CNFgrazil).
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